Microsoft®

tech-ed

North America ‘ 20']0

JUNE 7-10, 2010 | NEW ORLEANS, LA

Patterns of Parallel Programming

Ade Miller (adem@microsoft.com)
Senior Development Manager
Microsoft patterns & practices

i\ 1

. F-)
N\ By ‘u:/ ‘4'(;’
"= WG |

4 - —
/B] { k‘\\.

’ F

B L 3
Y 5 - lI) / b
i o=l ety e) Ay

Introduction

® Why you should care
® Where to start
® Pattern walkthrough

® Conclusions (and a quiz)

PARALLEL
PROGRAMMING

Deslgn Patterns for
Decomposition, Coordination
and Scalable Sharing

patterns & practices

Why Should You Care?
Then:

1 000.000 --- Dual-Core Itanium 2 !' Faster clocks
| melCPUTrends || AT
100,000 Wlk|e|a K. Olu un "'

kot
entiu
10,000 Now:
| More cores
End of the
Free Lunch

1970 1975 1980 1985 19920 1995 2000 2005 2010

The End of The Free Lunch

@ Although driven by hardware changes,
the parallel revolution is primarily a software revolution.

Parallel hardware is not “more of the same.”
Software is the gating factor.
Software requires the most changes to regain the “free lunch.”

Hardware parallelism is coming,
more and sooner than most people yet believe.

© © 0o ©

Where Should | Start?

® “Avoid multithreaded code”
® “Parallel programming is hard”
@ “It's for the experts”

® How do we succeed in this new parallel world?

@ Let’s look at an application and see...

An Example: Adatum-Dash

® A Financial application for portfolio risk analysis
@ Look at large chunks of recent and historical data
@ Compare models with market conditions

@ Source code (beta) available: http://parallelpatterns.codeplex.com/

http://parallelpatterns.codeplex.com/

The Adatum Dash Scenario

MavkedData

MavkedData

Analyze

Mm’kc—hﬁmahﬁ}s

MavketModel

MavkedModel

Adatum Dash

Finding Potential Parallelism

Data Parallelism Task Parallelism

@ Tasks vs. Data

\
I

Coordinated by

controf flow only
® Control Flow

2 Parallel Loops 3 Parallel Tasks

P]
e o o = -

Coordinated by control
flow and data flow

@ Control and
Data Flow

4 Parallel Aggregation gt Futures 7 Pipelines

6 Dynamic Task Parallelism

- mm e Em Em em Em e Em am Em e Em Em Em Em e Em Em =

Data Parallelism

® Data “chunk” size?
@ Too big — under utilization
@ Too small —thrashing

@ Chunk layout?
@ Cache and cache line size
@ False cache sharing

@ Data dependencies?

(Y

Q QO O

Task Parallelism

® Enough tasks?
® Too many — thrashing
@ Too few — under utilization
® Work per task?
@ Small workloads
@ Variable workloads
® Dependencies between tasks?
@ Removable
@ Separable
@ Read only or read/write

®

QO QO

Control and Data Flow

® Task constraints
@ Temporal: A—> B
@ Simultaneous: A <> B
@ None:AB
@ External constraints
@ |/O read or write order
@ Message or list output order
® Linear and irregular orderings
® Pipeline
@ Futures
®© Dynamic Tasks

QO+«

Solution Forces

® Flexibility:
@ Easy to modify for different scenarios
@ Runs on different types of hardware
® Efficiency:

@ Time spent managing the parallelism vs. time gained from utilizing more
Processors or cores

@ Performance improves as more cores or processors are added — Scaling
® Simplicity:
@ The code can be easily debugged and maintained

The Adatum Dash Scenario

MavkedData

MavkedData

Analyze

Mm’kc—hﬁmahﬁ}s

MavketModel

MavkedModel

The Futures Pattern) + ntroduetion

Data Parallelism Task Parallelism

\
I

Coordinated by

controf flow only

. 2 Parallel Loops . 3 Parallel Tasks

P]
e o o = -

1
(|

Coordinated by control
flow and data flow

. 4 Parallel Aggregation . 7 Pipelines

- mm e Em Em em Em e Em am Em e Em Em Em Em e Em Em =

. 6 Dynamic Task Parallelism

The Futures Pattern

“Does the ordering of steps in your
algorithm depend on data flow
constraints?”

@ Directed Acyclic Graph
@ Dependencies between tasks

® F4 depends on the result of F1 & F3
etc

© Also called “Task Graph”

Task Size and Granularity

@
@
@
@

Variable size tasks — harder to balance

Small tasks — more overhead; management and communication
Large tasks — less potential for utilization

Hardware specific — more tasks than cores

Course Grained Partition

MavkedD

Analyze
Mavked Anf

Fine Grained Partition

Futures

MavkedDada MavkedDaa

Finer Grained Partition

MavkedD s /] ’Itt-hﬂcnﬂfqﬁ‘if

MavkedAna i

MavkedModel

Data Parallelism Patterns) + ntroduetion

Data Parallelism Task Parallelism

\
I

Coordinated by

controf flow only

. 3 Parallel Tasks

PR
e o o = -

Coordinated by control
flow and data flow

. 4 Parallel Aggregation . 7 Pipelines

- mm e Em Em em Em e Em am Em e Em Em Em Em e Em Em =

. 6 Dynamic Task Parallelism

The Parallel Loop Pattern

“Do you have sequential loops where there's no communication among the
steps of each iteration?”

@ A very common problem!

The Parallel Aggregation Pattern

“Do you need to summarize data by applying some kind of combination
operator? Do you have loops with steps that are not fully independent?”

@ Calculate sub-problem
result per task

Merge results later
Reduces need for locking

o
@ “Reduction” or “map/reduce” U

Parallel Loops and Aggregation

The Parallel Tasks Pattern) + ntroduetion

Data Parallelism Task Parallelism

e

. 2 Parallel Loops

Coordinated by

controf flow only

P]
e o o = -

1
(|

Coordinated by control
flow and data flow

. 4 Parallel Aggregation . 7 Pipelines

- mm e Em Em em Em e Em am Em e Em Em Em Em e Em Em =

. 6 Dynamic Task Parallelism

The Parallel Tasks Pattern

“Do you have specific units of works with
well-defined control dependencies?”

Partitioning
@ How do we divide up the
workload?
@ Fixed workloads
@ Variable workloads
® Workload size
@ Too large — hard to balance
@ Too small — communication may dominate

Workload Balancing

® Static allocation:
@ By blocks
@ By index (interleaved)
® Guided
@ Dynamic work allocation
@ known and unknown task sizes
@ Task queues
@ Work stealing

@ The TPL does a lot of this work for you

Sharing State and Synchronization

Don’t share!
Read only data
Data isolation
Synchronization

@ © 0o ©

Parallel Tasks

The Pipeline Pattern) * msoductor

Data Parallelism Task Parallelism

\
I

Coordinated by

controf flow only

. 2 Parallel Loops . 3 Parallel Tasks

P]
e o o = -

1
(|

Coordinated by control
flow and data flow

- am = o =

. 4 Parallel Aggregation . 7 Pipelines

. 6 Dynamic Task Parallelism

The Pipeline Pattern

“Does your application perform a sequence of operations repetitively? Does
the input data have streaming characteristics?”

M | M : M : M
\V U |J U

XD D ED.
XD

[ERY
[HEY

2

W
W

NNMIM

)
)
)

NNMNM
NV N\ N\

The Producer/Consumer Pattern
@ Organize by Ordering

@ Producers... produce!
@ Block when buffer full
® Consumers... consume!
@ Block when buffer empty

>

>

Workload Balancing

® Pipeline length
® Long— High throughput
@ Short — Low latency
® Stage workloads
@ Equal —linear pipeline
@ Unequal —nonlinear pipeline

@
}CD «Q

\e

—

Q

Passing Data Down the Pipe

@ Shared queue(s)
® Large queue items — under utilization
® Small queue items — locking overhead

Pipeline

Opportunities for
Parallelism

e

MavkedDa syl Pipeline

omaac

Loop_ e prdifee

Vi avkedDada h’lﬁn’kt-mn.:afpﬁif
ETELIE

A
Aggregation

: Hﬁnﬁfqﬁa’

Parallel

IEH S
Cveate Model ok

‘ Compare ’

MavkedMode!

But Wait... There’s More!

What About Recursive Problems?

@ Many problems can be tackled using
recursion:

@ Task based: Divide and Conquer
@ Data based: Recursive Data

The Dynamic Task Parallelism) stntoductior
Pat‘te rn Data Parallelism Task Parallelism

\
I

Coordinated by

controf flow only

. 2 Parallel Loops . 3 Parallel Tasks

P]
e o o = -

1
(|

Coordinated by control
flow and data flow

. 4 Parallel Aggregation . 7 Pipelines

- mm e Em Em em Em e Em am Em e Em Em Em Em e Em Em =

. 6 Dynamic Task Parallelism

The Dynamic Task Parallelism Pattern

“Does your algorithm divide the problem domain dynamically during the
run? Do you operate on recursive data structures such as graphs?”

N
U
-—

N N
U U
- e
N
U

n n
v \

Workload Balancing

@ Deep trees — thrashing
@ Limit the tree depth
@ Shallow trees — under utilization
® Unbalanced Trees — under utilization

Dynamic Task Parallelism Example

static void Walk<T>(Tree<T> root, Action<T> action)

{
if (root == null) return;
var tl = Task.Factory.StartNew(() =>
action(root.Data));

var t2 = Task.Factory.StartNew(() =>
Walk(root.Left, action));

var t3 = Task.Factory.StartNew(() =>
Walk(root.Right, action));

Task.WaitAll(tl, t2, t3);

Conclusions

sSuccess =

® Frameworks and runtimes

® Task Parallel Library for .NET

@ Parallel Patterns Library for C++
@ Tools

@ Visual Studio 2010

@ Guidance!

Conclusions

Our Book

A Guide to Parallel Programming:
Design Patterns for Decomposition,
Coordination and Scalable Sharing

Goal: Help developers make the ==l
most of the new parallel features PARALLEL

PROGRAMMING

in Visual Studio 2010:

Due for release late summer 2010.
http://parallelpatterns.codeplex.com/

patterns & practices

http://parallelpatterns.codeplex.com/

Your Help

@ Take the book sample and read it!
@ Come and give me feedback...

@ Architecture Area of the TLC (next to the Dev Info desk) - 10:30 to 12:30 on
Wednesday

@ The p&p Booth
@ You don’t need to be a “parallel expert” to provide feedback!

® The first 40 people to read it and give me feedback @ TechEd will get a
free copy!

Other Resources

PATTERNS
FOR PARALLEL
PROGRAMMING

A Brain-Friendly Guide

_Ha.d First
Design Patterns

PATTERNS (1
ENTERPRISI
APPLICATIC
ARCHITECT

Books

@ Patterns for Parallel Programming — Mattson, Sanders &
Massingill

Design Patterns — Gamma, Helm, Johnson & Vlissides
Head First Design Patterns — Freeman & Freeman
Patterns of Enterprise Application Architecture — Fowler

Research

@ A Pattern Language for Parallel Programming ver2.0
@ ParaPLOP - Workshop on Parallel Programming Patterns

@ My Blog: http://ademiller.com/tech/
(Decks etc.)

http://www.amazon.com/Patterns-Parallel-Programming-Timothy-Mattson/dp/0321228111
http://www.amazon.com/Patterns-Parallel-Programming-Timothy-Mattson/dp/0321228111
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://www.amazon.com/First-Design-Patterns-Elisabeth-Freeman/dp/0596007124
http://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns
http://www.upcrc.illinois.edu/workshops/paraplop09/index.html
http://ademiller.com/tech/

Resources

Microsoft®

tech-ed Micresoft
Sessions On-Demand & Community Microsoft Certification & Training Resources

wwWw.microsoft.com/teched www.microsoft.com/learning

Learnin

Microsoft msdn
ICres p
Resources for IT Professionals Resources for Developers

http://microsoft.com/technet http://microsoft.com/msdn

http://www.microsoft.com/teched
http://www.microsoft.com/learning
http://microsoft.com/technet
http://microsoft.com/msdn

DO fOUOSSSYOL S SO

]

Complete an
evaluation on
CommNet and
enter to win!

»

I;F J

—
®music
. pictures

Sradio
18 marketplace

videos

social

Sign up for Tech-Ed 2011 and save $500
starting June 8 — June 315t
http://northamerica.msteched.com/registration

Microsoft®

tech-ed

North America| 2()7]
MAY 16-19 ’ ATLANTA ¢

You can also register at the
North America 2011 kiosk located at registration

Join us in Atlanta next year

https://mail.microsoft.com/owa/redir.aspx?C=adc4276acedf447ab646d268f1dab1a0&URL=http://northamerica.msteched.com/registration

Microsoft

© 2010 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft,
and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

| Organize ByOrdering | OrganizeByTasks |

Regular i Recursive

FPipelineProcessing i iti ithoni ivigles Bl i iti | RecursivelDawm
Distributed
Array \ETe}
Producer/ MPMD Reduce

Consumer [S T,
Separable Dependencies i i Inseparable Dependencies i

Pipeline Actors

D a8 Parallel I____“____:?__“_“__“_“I I______“__“___":;“““_“_I

LOOpS SeparableDependencies Protected Dependencies

Master/ Fork/ Shared Repository
Worker Queue
Task
Graph e—

Decision

loin

| Decision'branch point |

| Terminal pattern |

Source: More Patterns for Parallel Application Programs, Berna L. Massingill, Timothy G. Mattson and Beverly A. Sanders

Supporting Patterns

® “Gang of Four” Patterns
@ Facade
® Decorator
@ Repository
® Shared Data Patterns
@ Shared Queue

The Facade Pattern

@ Hide parallelism
@ Optimize call granularity

Source: Design Patterns — Gamma, Helm, Johnson & Vlissides
Patterns of Enterprise Application Architecture - Fowler

The Decorator Pattern

® Encapsulate parallelism
@ Calling code is parallel agnostic
® Add parallelism to an existing (base) class

;
\ Y

Source: Design Patterns — Gamma, Helm, Johnson & Vlissides

IFoo

The Repository Pattern

@ Shared hash or queue
@ Database
@ Distributed cache

O @ O

Source: Patterns of Enterprise Application Architecture - Fowler

The Shared Queue Pattern

Task Queue

@ A decorator to Queue

@ Hides the locking which protects the underlying queue
@ Facilitates Producer/Consumer pattern

® Producers call:
theQueue.Enqueue()

® Consumers call:
theQueue.Dequeue()

Source: Patterns for Parallel Programming — Mattson, Sanders & Massingill

Shared Queue Example

var results =
new ConcurrentQueue<Result>();

Parallel.For(0, 1000, (i) =>

{
Result result =
ComputeResult(i);
results.Enqueue(result);
1)

Parallel With PLINQ

var accountRatings =
accounts.AsParallel()
.Select(item =>
CreditRating(item))

.ToList();

Loop Parallel Examples

Parallel.For (O, acc.Length, i =>

{
})s

acc[i].UpdateCreditRating();

#pragma omp parallel for

for (int i = 9; i < len; i++)

{

acc[i].UpdateCreditRating();

Parallel Tasks Example

Parallel.Invoke(
() => ComputeMean(),
() => ComputeMedian()

)s

parallel invoke(
[&] { ComputeMean(); },
[&] { ComputeMedian(); },

)s

Pipeline Examples

var input = new BlockingCollection<string>();

var readlLines = Task.Factory.StartNew(() =>

{

try {

foreach(var line in
File.ReadAllLines(@"input.txt"))
input.Add(line);

¥
finally { input.CompleteAdding(); }

})s

Pipeline Examples

Get-ChildItem C:\ |
Where-Object {$_ .Length -gt 2KB} |
Sort-Object Length

