11/16/2009 9:25 PM

© 2009 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

11/16/2009 9:25 PM

Patterns of Parallel Programming
A Primer

Ade Miller
Senior Development Manager
Microsoft Corporation

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Introduction

Who am L.

Patterns Primer -> Patterns on multi-core -> Patterns on HPC

Herb already talked a bit about patterns.

How to think about an application and apply patterns to it.

Drill into some key patterns we'll be seeing during the rest of the workshop.
This talk isn't exhaustive.

Also... SOA and Azure applications

Searching for Parallelism

Finding exploitable
parallelism

> Organizing by Tasks
> QOrganizing by Data

> QOrganizing by Ordering

How do you think about your application to best bring out it's underlying parallelism?
You'll note that all these patterns have references.
We didn't just make them up!

Patterns have been found to work in a wide variety of situations.

http://www.sxc.hu/photo/649877

Organizing by Tasks

Linear or recursive?

> Task parallel

> Divide and conquer

Enough tasks?

> Too many — thrashing

> Too few — under utilization
Dependencies between tasks

Scheduling work to tasks

We're going to come back to dependencies and scheduling
when we look at the fork/join pattern in a few minutes.

Stephen has lots to say about “delightfully parallel” and how to minimize dependencies to get there.

Example - Linear: Running a series of statistical models with different initial criteria
Example - Recursive: Trees

Organizing by Tasks

Work per task?

> Small workloads

> Variable workloads
Dependencies between tasks?
> Removable

> Separable

> Read only or read/write

Organizing by Data

> Linear or recursive?
> Geometric decomposition
> Recursive data

> Data “chunk” size?
> Too big — under utilization
> Too small — thrashing

> Chunk layout?
> Cache and cache line size
> False cache sharing

Stephen will be talking about some of these implications in detail as it applies to efficiently using the
cache.

Richard will be covering how this maps onto a message passing approach where message size and
serialization overhead are important.

Example - Linear: Divide an image up and process individual lines or rectangles.

Organizing by Task Ordering

> Linear and irregular orderings
> Pipeline
> Asynchronous Agents
> Task constraints
> Temporal: A — B
> Simultaneous: A < B
> None: A B
> External constraints
> I/O read or write order
> Message or list output order

Identifying tasks with no constraints is important.
You can use these as “padding” to improve utilization while waiting on other dependencies.

Example: Image/data processing pipelines.

Forces

Flexibility:
> Easy to modify for different scenarios
> Runs on different types of hardware

Efficiency:

> Time spent managing the parallelism vs. time
gained from utilizing more processors or cores

> Performance improves as more cores or
processors are added — Scaling

Simplicity:
> The code can be easily debugged and
maintained

Some of these are mutually exclusive!
It's easy to think of “Simplicity” as an afterthought. Bad Idea!

Code spends more time being read than written.
Applications outlast several generations of hardware.

One way to improve efficiency is usually to add more work.
This improves the communication/management/setup vs. compute ratio

Example: Highly efficient code will (probably) be less flexible and harder to maintain.

Patterns for Parallelism

> Implementation Patterns
> Fork / Join
> Loop Parallel
Divide and Conquer
Producer/Consumer
Pipeline
Asynchronous Agents

These are just some of the common patterns. I'll be covering these from a high level here.

Stephen and Richard will be drilling down into how they are implemented and used.

http://www.sxc.hu/photo/694300

10

Pattern: Fork / Join

SPMD, Master/Worker and Loop Parallelism

X7 » B » I

Source: Patterns for Parallel Programming — Mattson, Sanders & Massingill

Going to cover this in some detail as in many ways it embodies
many of the challenges we'll see in all the other patterns.

11

Fork / Join Example

Parallel.Invoke(
() => ComputeMean(),
() => ComputeMedian()

)s

parallel_invoke(
[&] { ComputeMean(); 1},
[&] { ComputeMedian(); },
)

12

Partitioning

> How do we divide up the
workload?

> Fixed workloads =
> Variable workloads '
> Workload size
> Too large — hard to balance
> Too small — communication may dominate

Workload size is particularly important on distributed systems as communication may be costly.

Amortizing latency by sending larger messages may be the right thing to do.

Richard will be talking more about this later.

13

Workload Balancing

> Static allocation:
> By blocks
> By index (interleaved)
> Guided

> Dynamic work allocation
(known and unknown task
sizes)

> Task queues
> Work stealing

What if you don’t know the size of the task?

Example: Calculating in individual pixel on a Mandelbrot is a variable amount of work depending on it's
final “color”.

In this case static allocation will mean that you end up waiting for the slower tasks.

14

Sharing State and Synchronization

Don't share!
Read only data
Data isolation
Synchronization

Locking is an anti-pattern here (James Reinders)
F# Immutability

Possible to end up with serial performance (or worse)
If you have to resort to locks or shared data — ask, is there a better way?

15

Merging

Delay the “final answer”

Calculate sub-problem
result per task

Merge results later

Possible to also parallelize the
merge

Reduces need for locking

MapReduce pattern

Source: MapReduce: Simplified Data Processing on Large Clusters — Dean & Ghemawat

Stephen and Richard will both be talking about Map Reduce later.

16

Pattern: Loop Parallel

SPMD, Master/Worker and Fork / Join

> Idioms which apply in different contexts
Examples:
> SPMD - Distributed systems (MPI, Batch & SOA)
Fork / Join — Thread centric (TPL or PPL)

Master/Worker — Task centric (TPL or PPL)
Loop Parallel — Data centric (OpenMP)

Source: Patterns for Parallel Programming — Mattson, Sanders & Massingill

What about loop parallel?

Why am I mentioning it? A very common pattern!

17

Loop Parallel Examples

Parallel.For (@, acc.Length, i

{
acc[i].UpdateCreditRating();
1)

#pragma omp parallel for
for (int i = @; 1 < len; i++)

{
acc[i].UpdateCreditRating();

Loop parallel and fork/join are very similar

Different ways of thinking about the same problem.

Whole tools—like OpenMP—have been built around this pattern!

If indices of acc[] inside our loop share data think parallel tasks rather than loops.
Anti-Pattern: just go through your application parallelizing loops!

Stephen will be showing some more examples of loop parallelism and Parallel.For later.

18

Loop Parallel With PLINQ

var accountRatings =
accounts.AsParallel()
.Select(item =>
CreditRating(item))

.ToList();

Stephen will be talking more about PLINQ later.

19

What About Recursive Problems?

> Many problems can be tackled using
recursion:

> Task based: Divide and Conquer
> Data based: Recursive Data

Key linking content...
So loop parallel and fork join are two linear ways of thinking about tasks and data.
How about recursion?

Many problems can be tackled using a divide and conquer strategy where the program tackles sub-
problems.

We're going to talk about Divide and Conquer next...

20

Pattern: Divide and Conquer

> Recursive Task Parallel 0
> Divide problem up into

sub-problems 0 1 0
0] 0

Source: Patterns for Parallel Programming — Mattson, Sanders & Massingill

Trees are a classic divide and conquer strategy.

21

Workload Balancing

> Deep trees — thrashing
> Limit the tree depth
> Shallow trees — under utilization

Limit tree depth.

22

Divide and Conquer Example

static void Walk<T>(Tree<T> root, Action<T>
action)
{
if (root == null) return;
var tl = Task.Factory.StartNew(() =>
action(root.Data));

var t2 = Task.Factory.StartNew(() =>
Walk(root.Left, action));

var t3 = Task.Factory.StartNew(() =>
Walk(root.Right, action));

Task.WaitAll(t1, t2, t3);

Note: This is a simple example with no limiting. For deep trees we might end up with lots of tasks
(thrashing).

Stephen will be showing more sophisticated trees.

23

Pattern; Producer/Consumer

> Organize by Ordering “ “

> Producers... produce!
> Block when buffer full

> Consumers... consume!
> Block when buffer empty

Source: http://en.wikipedia.org/wiki/Producer-consumer problem

“Bounded buffer problem”

24

Pattern: Pipeline

Task 1

Task 1

b Tooks > Tosk2 IS
Tosk 2

Source: Patterns for Parallel Programming — Mattson, Sanders & Massingill

A series of producer/consumers

IEH @

25

Pipeline Examples

Get-ChildItem C:\ |
Where-Object {$.Length -gt 2KB} |
Sort-Object Length

MS-DOS, Unix and now PowerShell all allowed you to pipe the output of one process into another.

26

Workload Balancing

Pipeline length

> Long - High throughput

> Short — Low latency

Stage workloads

> Equal - linear pipeline

> Unequal — nonlinear pipeline

27

Passing Data Down the Pipe

> Message passing
> Buffering
> Message ordering
> Message size
> Shared queue(s)
> Large queue items — under utilization
> Small queue items — locking overhead

Two approaches...
Messages (MPI) much higher communication overhead

Shared Queue (TPL/PPL)

28

Pipeline Examples

var input = new BlockingCollection<string>();

var readLines = Task.Factory.StartNew(() =>
{
try {
foreach(var line in

File.ReadAllLines(@"input.txt"))
input.Add(line);

}
finally { input.CompleteAdding(); }
s

var writeLines = Task.Factory.StartNew(() =>

{
File.WriteAllLines(@”output.txt",
input.GetConsumingEnumerator());
s

Task.WaitAll(readLines, writelLines);

29

Pattern: Asynchronous Agents

MPMD, Actors, Event Based Coordination

> Data passed between

o N

Mentioning this largely because it seems like one of the obvious ways to think about parallelism.

You can write applications this way but it's hard!
Note how data moves in all sorts of directions.

This is a recipe for deadlocks, livelocks and all manner of other difficulties.

30

Supporting Patterns

> "Gang of Four” Patterns
> Facade
> Decorator
> Repository
> Shared Data Patterns
> Shared Queue

31

Pattern: Facade & Remote Facade

> Hide parallelism
> Optimize call granularity

Source: Design Patterns - Gamma, Helm, Johnson & Vlissides
Patterns of Enterprise Application Architecture - Fowler

Richard will be explaining how may parallel implementations on HPC SOA

32

Pattern: Decorator

Encapsulate parallelism
> Calling code is parallel agnostic

Add parallelism to an existing (base) class

IFoo
ConcurrentFoo

n

v

Source: Design Patterns — Gamma, Helm, Johnson & Vlissides

Stephen will be showing an example of a ThreadedWriteStream decorator which
extends the stream classes to offload writes onto another thread.

33

Pattern: Repository

> Shared hash or queue
> Database

| 8 > Distributed cache

Source: Patterns of Enterprise Application Architecture - Fowler

Control access to shared data

34

Pattern: Shared Queue

Task Queue

> A decorator to Queue

> Hides the locking which protects the underlying
queue

> Facilitates Producer/Consumer pattern

> Producers call:
theQueue.Enqueue()

> Consumers call:
theQueue.Dequeue()

Source: Patterns for Parallel Programming — Mattson, Sanders & Massingill

The PPL and TPL both provide implementations of shared queue
and several other shared/concurrent collections

» ConcurrentQueue

+ ConcurrentStack

» ConcurrentDictionary
+ BlockingCollection

» ConcurrentBag

Richard will also be showing how HPC SOA uses queues in it's task scheduling.

35

Shared Queue Example

var results =
new ConcurrentQueue<Result>();

Parallel.For(0, 1000, (i) =>

{
Result result = ComputeResult(i);
results.Enqueue(result);

})s

Note that shared queue’s behavior differs from that of a serial queue.
The order of items is no longer guaranteed!

36

Patterns of Patterns

> ConcurrentQueue<T>
> Implements: IProducerConsumerCollection<T>
> Wraps Queue<T>

> No IQueue<T> interface (not strictly a
decorator)

See the same patterns occurring over and over again.
Patterns build on each other.

37

e
OrganizeByData

! Regular | + Recunsive } i Linear i Recunive |
GeometricDecomposition " [I RecursiveData "

Divide & Distributed
Conquer Array

PipelineProcessing AsynchronosComposition " I Partitioning I

Pipeline

{ Independent

Producer/
Consumer

EmbarrassinglyParallel , Separable Dependencies glmqwml.- Drpfndm(ini

Loop / \

Paralle|

VESC

Worker FoT

Join

Decision/branch point
Terminal pattern

Source: More Patterns for Parallel Application Programs, Berna L. Massingill, Timothy G. Mattson and Beverly A. Sanders

We've seen a lot of different patterns today.

After lunch we'll see many of them applied to both multi-core and HPC platforms.

38

Conclusions

What's this?... A Hammer
What's this?... A Nail
What's this?... A cute bunny

When someone shows you a hammer everything starts to look like a nail.
Don't do this with a hammer, for the bunny’s sake.

Don't do this with parallelism or patterns for everyone’s sake. USE THEM WISELY!

http://www.sxc.hu/photo/604247
http://www.sxc.hu/photo/1101239
http://www.sxc.hu/photo/786448

39

Want to Find Out More?

- Books

PATTERNS
AL > Patterns for Parallel Programming — Mattson, Sanders &
LECH Massingill

Design Patterns — Gamma, Helm, Johnson & Vlissides
Head First Design Patterns — Freeman & Freeman
Patterns of Enterprise Application Architecture — Fowler

“Head First, Research

iatiers A Pattern Language for Parallel Programming ver2.0
ParaPLOP - Workshop on Parallel Programming Patterns

My Blog: http://ademiller.com/tech/
(Decks etc.)

Stock photos from: http://www.sxc.hu/

The other speakers will also have links and other resources specific to the content of their talks.

40

icrosoft

Your potential. Our passion.”

., Windo
and represents the current view of
on the part of Microsoft, and M cannot guarantee the
VATION IN THIS PRESENTATION.

11/16/2009 9:25 PM

© 2009 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

41

