
11/16/2009 9:25 PM

© 2009 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market

conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 1

11/16/2009 9:25 PM

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market

conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2

Who am I.

Patterns Primer -> Patterns on multi-core -> Patterns on HPC

Herb already talked a bit about patterns.

How to think about an application and apply patterns to it.

Drill into some key patterns we’ll be seeing during the rest of the workshop.

This talk isn’t exhaustive.

Also… SOA and Azure applications

3

How do you think about your application to best bring out it’s underlying parallelism?

You’ll note that all these patterns have references.

We didn’t just make them up!

Patterns have been found to work in a wide variety of situations.

--

http://www.sxc.hu/photo/649877

4

We’re going to come back to dependencies and scheduling

when we look at the fork/join pattern in a few minutes.

Stephen has lots to say about ―delightfully parallel‖ and how to minimize dependencies to get there.

Example – Linear: Running a series of statistical models with different initial criteria

Example – Recursive: Trees

5

6

Stephen will be talking about some of these implications in detail as it applies to efficiently using the
cache.

Richard will be covering how this maps onto a message passing approach where message size and
serialization overhead are important.

Example – Linear: Divide an image up and process individual lines or rectangles.

7

Identifying tasks with no constraints is important.

You can use these as ―padding‖ to improve utilization while waiting on other dependencies.

Example: Image/data processing pipelines.

8

Some of these are mutually exclusive!

It’s easy to think of ―Simplicity‖ as an afterthought. Bad Idea!

Code spends more time being read than written.

Applications outlast several generations of hardware.

One way to improve efficiency is usually to add more work.

This improves the communication/management/setup vs. compute ratio

Example: Highly efficient code will (probably) be less flexible and harder to maintain.

9

These are just some of the common patterns. I’ll be covering these from a high level here.

Stephen and Richard will be drilling down into how they are implemented and used.

--

http://www.sxc.hu/photo/694300

10

Going to cover this in some detail as in many ways it embodies

many of the challenges we’ll see in all the other patterns.

11

12

Workload size is particularly important on distributed systems as communication may be costly.

Amortizing latency by sending larger messages may be the right thing to do.

Richard will be talking more about this later.

13

What if you don’t know the size of the task?

Example: Calculating in individual pixel on a Mandelbrot is a variable amount of work depending on it’s
final ―color‖.

In this case static allocation will mean that you end up waiting for the slower tasks.

14

Locking is an anti-pattern here (James Reinders)

F# Immutability

Possible to end up with serial performance (or worse)

If you have to resort to locks or shared data – ask, is there a better way?

15

Stephen and Richard will both be talking about Map Reduce later.

16

What about loop parallel?

Why am I mentioning it? A very common pattern!

17

Loop parallel and fork/join are very similar

Different ways of thinking about the same problem.

Whole tools—like OpenMP—have been built around this pattern!

If indices of acc[] inside our loop share data think parallel tasks rather than loops.

Anti-Pattern: just go through your application parallelizing loops!

Stephen will be showing some more examples of loop parallelism and Parallel.For later.

18

Stephen will be talking more about PLINQ later.

19

Key linking content…

So loop parallel and fork join are two linear ways of thinking about tasks and data.

How about recursion?

Many problems can be tackled using a divide and conquer strategy where the program tackles sub-
problems.

We’re going to talk about Divide and Conquer next…

20

Trees are a classic divide and conquer strategy.

21

Limit tree depth.

22

Note: This is a simple example with no limiting. For deep trees we might end up with lots of tasks
(thrashing).

Stephen will be showing more sophisticated trees.

23

―Bounded buffer problem‖

24

A series of producer/consumers

25

MS-DOS, Unix and now PowerShell all allowed you to pipe the output of one process into another.

26

27

Two approaches…

Messages (MPI) much higher communication overhead

Shared Queue (TPL/PPL)

28

29

Mentioning this largely because it seems like one of the obvious ways to think about parallelism.

You can write applications this way but it’s hard!

Note how data moves in all sorts of directions.

This is a recipe for deadlocks, livelocks and all manner of other difficulties.

30

31

Richard will be explaining how may parallel implementations on HPC SOA

32

Stephen will be showing an example of a ThreadedWriteStream decorator which

extends the stream classes to offload writes onto another thread.

33

Control access to shared data

34

The PPL and TPL both provide implementations of shared queue

and several other shared/concurrent collections

• ConcurrentQueue

• ConcurrentStack

• ConcurrentDictionary

• BlockingCollection

• ConcurrentBag

Richard will also be showing how HPC SOA uses queues in it’s task scheduling.

35

Note that shared queue’s behavior differs from that of a serial queue.

The order of items is no longer guaranteed!

36

See the same patterns occurring over and over again.

Patterns build on each other.

37

We’ve seen a lot of different patterns today.

After lunch we’ll see many of them applied to both multi-core and HPC platforms.

38

What’s this?... A Hammer

What’s this?... A Nail

What’s this?... A cute bunny

When someone shows you a hammer everything starts to look like a nail.

Don’t do this with a hammer, for the bunny’s sake.

Don’t do this with parallelism or patterns for everyone’s sake. USE THEM WISELY!

--

http://www.sxc.hu/photo/604247

http://www.sxc.hu/photo/1101239

http://www.sxc.hu/photo/786448

39

The other speakers will also have links and other resources specific to the content of their talks.

40

11/16/2009 9:25 PM

© 2009 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market

conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 41

