
Fast… Faster… FASTER!
Ade Miller, Programmer

Caveat Emptor

This isn’t Microsoft

This is me

I’m not (much of) an expert

These are my crazy ideas

Your mileage may vary… a lot

“Some guy from Microsoft said…”

So What’s this All About?

Real Problems Like This…

N > 106

First Some Physics…
For each particle calculate
force and acceleration:

At each time step update
position and velocity:

First Some Physics…

Do this for every particle:

Scales as: N2

For real problems N is very large

So… N = 10,000 is 100 times slower than 1,000

Also Applies To This…

Familiar Requirements

• A rich UI with significant rendering
requirements

– Mixed WPF and DirectX UI

• Requires significant processor resources

– Native code

– Parallel (multi-core and GPGPU) code

• A diverse problem domain

– Both OO and Functional implementations

The Problem

• I want the productivity and richness of .NET
– Memory management

– Rich tooling and frameworks

• But native code gives me:
– Fine grained control

– Performance

– Access to specific hardware like SSE and GPUs

I’d like to have my cake and eat it

A QUICK APPLICATION TOUR
Demo…

WPF

Prism
Direct X

C++

C# F#
C++ / CLI

Unity

Enterprise
Library

C# WPF Shell

Player
Module

C# Domain Model

Telescope Module

Direct X / C++
viewer

C++
Integrator(s)

F# Integrator(s)

C# Integrator(s)

A Mixed Language Architecture

C++/PPL
Integrator(s)

C#/TPL
Integrator(s)

C/CUDA
Integrator(s)

Common interfaces
and types

Cross-cutting
Concerns

Enterprise
Library 5.0

Unity 2.0

Prism 2.0
Framework

Dashboard
Module

Configuration
Module

Logger
Module

THE BASICS… PARALLEL C#
Deep Dive…

C# Domain Model

MIXING C# AND NATIVE C++
Deep Dive…

C++/CLI Wrapper

C++ Integrator

Performance For This Application

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

CPU C# CPU C++

Ti
m

e
in

 m
s

Serial

Parallel

6 x

17 x
9 x

Average runtime for model with N = 3000 running for 16 iterations on a i7 920 or GTX 260

THINKING ABOUT CACHE
Deep Dive…

1 6

7 8

Performance For This Application

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

CPU C# CPU C++

Ti
m

e
in

 m
s

Serial

Parallel

Parallel +

6 x

17 x
9 x

Average runtime for model with N = 3000 running for 16 iterations on a i7 920 or GTX 260

32 x

The Computer Under Your Desk

CPU
50GFlops

GPU
1TFlop

CPU RAM
4-6 GB

GPU RAM
1 GB

10GB/s 100GB/s

1GB/s

CPU vs. GPU

CPU 0 CPU 1

CPU 2 CPU 3

L2 Cache

SIMD

SIMD

SIMD

SIMD

SIMD

SIMD

SIMD

SIMD

SIMD

SIMD

SIMD

SIMD

SIMD

SIMD

SIMD

SIMD

SIMD

SIMD

L2 Cache

SIMD

SIMD

SIMD

SIMD

SIMD

SIMD

SIMD

SIMD

SIMD

SIMD

CPU GPU

SIMD

SIMD

SIMD

SIMD

SIMD SIMD

SIMD

SIMD

SIMD

SIMD

SIMD SIMD

PROGRAMMING THE GPU WITH
CUDA

Deep Dive…

Performance

0

100

200

300

400

500

600

700

800

900

1000

CPU C# CPU C++ GPGPU C++

Ti
m

e
 in

 m
s

Serial

Parallel

Parallel +

330 x

Average runtime for model with N = 3000 running for 16 iterations on a i7 920 or GTX 260

First Some More Physics…

First Some More Physics…

Barnes-Hut Model

Scales as: NLogN

A PARALLEL TREE CODE IN F#
Deep Dive…

Conclusions

• Best tool for the job; C#, F#, C++

• Best hardware for the job:

– CPUs good at branching

– GPGPUs good at crunching (not branching)

• The TPL will do a lot for you but you still have
to think

Effort vs. Speedup

C#

C#
TPL

C++
PPL

C++

F#

CUDA

Speedup

Programmer Effort

C++
Cache

SSE

F#
Tree

Conclusions

“It’s The Algorithm Stupid”

Good Hardware + Bad Code

= Bad Performance

Instructions are Cheap

Cache Misses are Expensive

That’s All

Rats by…

Resources

• The code – http://ademiller.com/nbody

– Examples in C#, F# and C++

– CUDA source soon (waiting for 2010 support)

– GUI sometime soon (maybe)

http://ademiller.com/nbody

