
1

Notes

This deck contains some speaker notes. Most of the real content can be found in the

paper that accompanied this deck. You can find a link to the paper on my talks page

here:

http://www.ademiller.com/blogs/tech/talks/

The speaker notes for this deck ran off the slide in several places. This PDF includes

additional blank slides that were not in the talk to allow you to read the notes.

OK… So here goes!

Let’s go!...

INTRODUCTION… TWENTY MINUTES… THE TITLE

Introduce the authors and apologies for non attendees.

This is a twenty minute talk with ten minutes for questions at the end. If you
have questions please try and save them up!

I’d just like to say a few words about the title…

This isn’t about “our software is bigger than your software”. It’s about the
feeling I had when I first joined Developer Division and realized that I was
working on a product that included the .NET runtime, several languages and
dozens of tools all built around a common IDE in addition to my team taking a
additional dependency on Office. As a developer I would get a new drop of
everything every week or so.

For a while this made my head spin.

2

3

ONE OF 15 TEAMS… 75 PEOPLE… 43 MILLION LOC… REALLY ABOUT HOW…

This talk is really about how Developer Division rolled out a new software development

process across the whole division and how our Product Unit was able to leverage that

to enable further agility within that larger process.

Visual Studio Tools for Office product unit, henceforth referred to at “the PU” – because the full

name is waaay too long - is just one of 15 teams that comprise Visual Studio.

This product unit develops the toolset within Visual Studio that allows developers to customize

Office applications using .NET code. For example; custom behavior behind and Excel

worksheet written in C#.

The PU consists of 75 people;

30 developers

30 testers

A further offshore test team of 6

Management comprising the remainder

Visual Studio as a whole is around 1200 people working on a product containing 43 million

lines of code. Both these numbers are growing.

4

WHO USES VS… SHORTEN GAPS… DEPENDENCIES ARE CHALLENGING…

Developer Division used the Feature Crew Model to attempt to address these issues

across the whole Division. Our PU took advantage of this and did a lot more work to be

even more agile inside this existing model.

How many people here use Visual Studio?

How many of you were OK with long gaps between releases?

One of the key drivers was start to shorten the gap between releases…

During development we also wanted to ship Customer Technology Previews (CTPs) to

customers more frequently so that we could get feedback and potentially alter the direction

of product development earlier and more often during the product cycle.

We wanted to shorten the gap between features being implemented, tested and their

delivery to customers (in the form of a CTP, betas or the final product). We also wanted to

increase the quality and usability of the CTPs making sure that features in a CTP were

clearly defined.

As wanted to deliver a continuous stream of value to the customer.

6

FRAMEWORK… SMALL TEAMS… NOT VERY PRESCRIPTIVE… COMMON SET OF

REQUIREMENTS

A the feature crew model is really a framework for large scale development that seek to

address these issues. It was originally developed and used by the Microsoft Office teams.

A feature crew is a small interdisciplinary team charged with delivering a single (small)

feature as part of a larger end-to-end user experience within the product (sounds familiar

right?).

Typically our crews consisted of a couple of developers, 2-3 testers and a Program Manager,

who played the role of the customer and to some extent the team facilitator.

The Feature Crew model itself doesn’t really prescribe how the team builds software –

although it does make some recommendations – it focuses on the end result of the crew.

Feature Crews deliver their feature, or sub parts of it, over one or more five week iterations

and integrate it into the main product.

Feature Crews deliver features that meet a common set of requirements “done”, these are

called Quality Gates.

7

DECOUPLE… (PARTIAL) OWNERSHIP…

In order to scale to a very large project the Feature Crews model attempts to decouple teams,

product features and code.

Each crew works on a single product feature the team is responsible for the whole feature

which is itself part of an end-to-end user experience. The crew’s product owner is free to

make changes to the feature provided this does not result in significant changes to the end-to-

end experience.

Our PU chose to handle experience changes by having crews surface them to the

management team at a weekly meeting.

8

ISOLATION OF SOURCE… HOW THE RIBBON DESIGNER CREW INTEGRATES

Each crew is further isolated by working in its own private source code tree or “branch”.

When a piece of work is complete it is integrated into the parent branch and ultimately into the

main product branch from which the product is build

CLICK! In order for the Ribbon Designer crew to get their feature into the main branch they

must…

9

FLEXIBILITY… VISIBILITY… LEADS

Decoupling teams, features and code gives teams the flexibility to create features as they see

fit.

It creates visibility issues as teams don’t really see what other teams are doing, especially for

features that are dependent on other features in the same PU or even features provided by

other PUs.

People: One of the roles of management is to watch out for breaking issues and give

individual crews the heads up. This ties in the Diana Larson’s approach to managers in an

agile organization, managers as team facilitators.

Leads took part in the crew’s daily standups and also attended a weekly management

meeting to track not only progress but also cross-features issues that might impact individual

crews.

Process: Define a common definition of “done” – the “Quality Gates” so that features and

code meet a common standard before they move around the tree.

10

16 GATES… A CONTRACT… NOT DEFERRED WORK

So what do I mean by Quality Gates? A series of 16 tests or criteria that define if a feature

meets the “done” bar:

Testing – unit and acceptance

Feature Bugs Closed

Performance

Test Plan

Code Review

Functional Spec

Documentation Plan

Development Spec

Security

Samples

Static Analysis

BVTs Passing

Setup Verification

Test Matrix

Code Coverage

Localization

12

SEVERAL WEEKS… WHOLE DIVISION… TESTS FOR ALL PARTS OF THE PRODUCT

The Quality gates are a comprehensive set of requirements across the whole division.

The cost of passing all 16 of these gates was quite significant but the goal we to ensure

that a product was buildable from the main branch all the time.

Teams might take several weeks to pass the gates and integrate their changes into the main

product branch. This meant that crews were not able to integrate their changes at the end

of each iteration.

13

SCRUM… NOT SCRUM…

Much of what we did was taken from Scrum. We found lots of value in these practices.

Iteration cadence – five week iterations

Daily standup

Burndowns – tool for publishing burndowns and iteration backlogs to the web

Backlogs – product and iteration

Release plan

Retrospectives

End of iteration demo

Customer representative present (the PM on the team as a proxy for the customer)

15

VALUE… SIZING AND BALANCING… VISIBILITY… INTEGRATION… TRANSPARENCY

Lots of value in many agile practices. Some barriers to some of them, for example pair

programming.

Sizing and balancing crews can be hard, larger teams struggle with standups, smaller ones

find quality gate work overwhelming.

The Feature Crew model sees crews as ephemeral, only lasting the lifetime of the feature’s

development which might be a single iteration. We aligned a series of features around an end-

to-end user experience and kept the same crew together for the whole product cycle. This led

to some people balancing issues as the loading on different features changed.

Visibility between crews was also an issue both in terms of breaking code changes in the

codebase and getting interim updates to other crews.

17

