
Agility and the Inconceivably Large

Ade Miller and Eric Carter

Abstract

This report outlines the experiences of the Microsoft

Visual Studio Tools for Office product unit (hereafter

referred to as “product unit”) as it applied agile

principles and practices while developing features for

one of the largest commercially available pieces of

software in the world, Microsoft’s Visual Studio®

development system. Scaling agile to very large

projects has proven challenging because of the

escalating coordination requirements between many

small teams. The product unit used the feature crew

model to decouple individual teams within the project.

This allowed teams to operate in a more agile manner

while still participating in a much larger undertaking.

1. Introduction

The Visual Studio Tools for Office product unit is

one of 15 teams, comprising Developer Division, who

collectively create features that ship in Microsoft’s

Visual Studio product. The product unit consists of 75

people including 30 developers and 30 testers with an

additional off shore test team of six. The total number

of people working on Visual Studio is around 1200.

The complete Visual Studio codebase comprises over

43 million lines of code.

Shortly after the release of Visual Studio 2005 the

product unit made the decision to reorganize their

software development life cycle as part of a wider

Developer Division initiative [1]. While the prior

release had been very successful, improvements in the

process could be made by ensuring that work was not

deferred into the stabilization phase. While the product

might reach “code complete” on schedule with the full

breadth of features, “feature complete” with its

requisite quality and feature depth was not achieved

until very late in the cycle. This impacted the ability to

maintain a stable main branch during development

(thereby requiring additional work to manage this), to

produce frequent Customer Technology Preview

releases (CTPs), and to move towards the shorter

product cycles desirable in this market. Deferring work

also reduced the ability to accurately predict ship dates.

Previously the product unit had been organized with

different functional management structures; these

included development, test, and program management.

The different structures tracked and reported work

differently—leading to reduced visibility across the

organization. We also took a milestone based

approach, with milestones lasting several months. This

led to large gaps in time between specification,

development, integration, and testing of new

functionality.

2. Our Approach

Developer Division adopted the feature crew model

that was originally used for the development of

Microsoft Office 2007. Feature crews are multi-

disciplinary teams of five to ten people that own a

single feature and work on it in an isolated branch

called a feature branch within a tiered source code tree

[2]. Any completed work must pass a series of gates or

acceptance criteria in order to be considered “done”

and integrated from the isolated branch to the parent

branch. The isolation afforded by this branch structure

and the use of a common definition of “done,” as

followed across Developer Division, allowed

individual crews a great deal of flexibility in their day

to day development practices.

The feature crew model mandates little regarding

the actual process used by the crew to complete their

work provided it passes a set of acceptance tests—the

quality gates, see Section 3.2. This afforded the

product unit the opportunity to try new agile

approaches to our development process within the

framework of the feature crew model.

3. Our Experiences

This paper does not seek to cover all aspects of our

experiences. Instead it highlights select key areas that

were particularly significant on a project of this size

including:

 Feature crews and how the product unit used

them to encapsulate agile teams.

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

 The use of a tiered source tree to isolate the

development activities of individual teams and

provide them a greater degree of autonomy.

 Our use of agile practices within teams on a

daily basis.

3.1 The Feature Crew Model

For the next release of Visual Studio a new model

of development was adopted called the feature crew

model, as described in Section 2. Features are typically

“epic” sized [3] pieces of user functionality delivered

by a crew in five to ten weeks. Once a feature is

completed and integrated into the parent branch, the

feature crew is then disbanded and crew members are

reallocated to start on another feature.

The product unit further refined the feature crew

model by applying some additional agile concepts (or

practices). We used end to end user experiences—

comprised of several related features—to define the

product. These experiences represented a contract

between the product unit and the customer who was

represented by the product unit’s General Manager.

Instead of breaking up feature crews once they were

feature complete, the product unit chose to keep feature

crews together to deliver select end to end user

experiences over the entire ship cycle.

Thus far we have found this long-lived feature crew

model to be quite powerful as it allows teams to

become more effective over time rather than repeatedly

reforming teams around small pieces of unrelated

work. On the other hand, it has made load balancing of

development work across the product unit difficult as it

precludes moving people from one end to end user

experience to another.

Each feature crew delivers their end to end user

experience in a prioritized fashion, integrating features

into the parent branch when acceptance criteria are met

and that end to end user experience is ready for

customer feedback. Scheduling and planning is based

on a five week iteration cadence used by the Developer

Division. Our crews adopted much of the thinking

behind Scrum [4] by using daily stand-ups, backlogs,

burndowns, and iteration planning meetings to plan

and track progress. Crews were empowered to manage

the day to day development decisions. Senior

management acted on behalf of the customer and was

only involved in approving changes to the end to end

user experiences. At the end of each iteration, crews

demonstrated complete features to stakeholders. The

progress was evaluated against the larger end to end

user experience owned by that crew.

As part of adopting the feature crew process we also

wanted to improve our project management system to

increase transparency across the organization. We built

a unified set of tools for backlog management and

reporting to surface the burndowns, blocking issues,

and dependencies for the individual feature crews.

Crews entered data into a Visual Studio Tools for

Office enabled Excel spreadsheet which generated

reports locally and also uploaded them to a SharePoint

site.

One challenge we faced was projecting the

corporate hierarchy of development, test, and program

management onto cross functional teams. In addition to

a reporting structure and meeting cadence, ground

rules for management interference were also defined.

The goal was to try to keep as much control in the

hands of the crew itself while meeting the needs of

management.

Organizationally, we tried to align the staff on a

feature crew with discipline leads who were

responsible for that feature crew. Each lead was

responsible for two to three feature crews. In practice

we found that two features crews was about the

maximum number of crews a lead could be involved

with because each crew was working in a different

technology space.

Even with leads in place, the crew was still given

latitude also to manage themselves. For example, leads

were involved in daily stand-ups, as described by

Scrum, as “chickens” not “pigs” [4]. The main function

of the leads was finding the gaps between experiences,

making sure that everyone on the feature crew had a

fair distribution of challenging assignments, reporting

feature crew status up to management, and ensuring the

general happiness and health of each crew.

At the end of an iteration, each crew would come up

with a plan for the next iteration. Their plan would

include details of the next features they would build,

whether the end to end user experience as proposed

would change, a product backlog, and a demo goal.

Individual crew iteration plans were first drafted

without lead involvement. This allowed the crew to

build, commit to and manage the plan.

Iteration plans were then reviewed by the leads

associated with the feature crew. The plans were

summarized by the leads and submitted to product unit

management for final approval. This was an

opportunity for senior management to set direction on

an iteration basis and do load balancing across the

different crews.

Sometimes as crews would roll up their plan for the

next iteration to management, changes would be

requested which resulted in “re-planning.” This re-

planning occurred when load balancing had to occur

across feature crews or when changes to the user

experience being delivered by the crew were deemed

not up to standard. To mitigate the re-planning

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

problem, leads and management started to “chicken-in”

to crew planning meetings to influence the plan earlier.

3.2 Quality Gates

Another key component of the development process

was the use of quality gates listed in Table 1 to ensure

stability in the main product branch. For more on the

branching model see Section 3.3. The gates ensure that

features are complete and ready for customer feedback

when they are delivered as part of a CTP after the

quality gates are met. The gates reduce the possibility

of work being deferred, avoiding the problem of hitting

code complete with a much later feature complete.

The quality gates act as a compact between teams in

different branches and product units ensuring a

common definition of “done” across Visual Studio.

Quality gates include a set of automated build

verification test (BVT) suites contributed to by all the

product units that are designed to make sure that teams

working in different branches maintain core product

stability.

The amount of work required to pass all the quality

gates proved to be significant. Typically crews would

spend several weeks focused on quality gate work prior

to integrating a feature into the parent branch.

Table 1: Quality gates

Quality Gate Description

Testing All planned automated tests and

manual tests are completed and

passing

Feature Bugs

Closed

Any bugs found in the feature

are fixed or closed

Performance Performance goals for the

product are met by the new

feature

Test Plan A test plan is written that

documents all planned

automated and manual tests

Code Review Any new code is reviewed to

ensure it meets code design

guidelines

Functional Spec A functional spec has been

completed and approved by the

crew

Documentation

Plan

A plan is in place for the

documentation of the feature

Development Spec A document describing the

architecture and implementation

is in place

Security Threat model for the feature has

been written and possible

security issues mitigated

Samples A sample has been written

showing how a customer would

use the feature

Static Analysis Tools are run to analyze the

code for security and other

defects

BVTs Passing The Build Verification Tests—a

set of automated tests

contributed to by all the product

units in Visual Studio, are

passing with the new feature in

place

Setup Verification Tests are run to verify the new

feature can be installed,

uninstalled, and serviced

Test Matrix The new feature is verified to

work on multiple operating

systems and multiple versions of

Office

Code Coverage Unit tests are in place for the

new code which ensure 80%

code coverage of the new

feature

Localization The feature is verified to work

in multiple languages

3.3 Tiered Source Tree

Visual Studio uses a distributed source development

model where different teams submit source code

changes into branches within a large three level tree.

Features are developed in a branch called a feature

branch which is then integrated to the parent product

unit branch and finally to the root main branch from

which the final product is built.

Figure 1. Feature branch layout

Main Visual
Studio
Branch

Visual Studio
Tools for

Office

Ribbon
Designer

Outlook
Forms
Region

Word
Content
Controls

Visual C# Visual Basic

Product
Unit
Branches

Visual Studio
Tools for

Office Feature
Crew Branches

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

Feature crews develop their code in leaf branches of

the tree. Crews can periodically take updates from the

parent branch and merge them into their branch. This

process is called a forward integration (FI) and was

typically done every other week. To keep the parent

branch up to date, forward integrations between the

main Visual Studio branch and the product unit

branches occur every other week.

Once a crew finishes all or some significant part of

their feature, they integrate changes back into the

parent branch. This is known as a reverse integration

(RI). During RI, a feature crew must complete an FI

and pass the quality gates before completing the

reverse integration back into the parent branch.

The RI activity also takes place between the product

unit branch and the main Visual Studio branch. The

product unit branch is used as a staging area to verify

that different end to end user experiences created by

different feature crews interact well with each other.

This verification was achieved by additional automated

and manual testing. Finally, the product unit branch is

integrated back into the main product branch from

which monthly CTP builds are created and made

available to customers.

3.4 Agile Development Practices

In addition to adopting a more agile process for this

Visual Studio release cycle the product unit expanded

its use of agile development practices within the

feature crews. We had previously done some

experimenting with unit testing, continuous integration

(CI) and daily stand-ups, and saw positive results from

all three practices. As a result, these practices have

expanded and become core to our day to day

development activities across the whole product unit.

For example, unit testing has been adopted on a far

broader scale as we push towards the 2007 release of

Visual Studio. We promoted its adoption with our

developers both by providing education—talks and

courses—and having key developers champion best

practices. Our goal continues to be achieving

maximum code coverage with unit tests where

possible.

We also created tools to make authoring of unit

tests easier. We automated the creation of skeleton

Visual Studio Team System test projects within our

source tree and integrated them with the command line

test execution environment and code coverage tools.

We planned to adopt CI fully during this release. Prior

to starting the release the authors were involved in the

development of a CI server application which was

rolled out across Developer Division. Each feature

crew was allocated dedicated hardware for running at

least one CI server.

In addition to setting up a conventional CI build—

build and run unit tests in ten or so minutes—we also

used the CI servers to create a “defense in depth”

strategy. The same CI machine could be used to do full

debug builds and run automated acceptance tests

frequently throughout the day. This allowed us to

detect breaking issues in code an hour or so after it was

checked in rather than waiting for the next test pass.

Our daily stand-ups started off being modeled after

Scrum. While the basic format of a short daily meeting

did not change, it was interesting to see them evolve

over time as each team formed. The most noticeable

influence on these meetings was the style of the team’s

program manager. Our feature crews were all co-

located but usually occupied individual offices. Stand-

ups provided a regular forum for tracking progress and

face to face communication.

Practicing agile involves continuous improvement.

Consequently we continue expanding our unit testing

to encompass test driven development activities, and

have sent more people to ScrumMaster training. There

is also ongoing work to automate more of the quality

gates and reduce the cost of integrating between

branches. This will allow more frequent forward

integrations and reduce the cost of reverse integrations.

4. Conclusions

Perhaps unsurprisingly the product unit found a lot

of value in creating cross functional teams and having

these teams own an end to end user experience that

they delivered together. Development and test worked

together more effectively: development helped with

test tasks and test helped with development tasks. Any

change to the product was quickly validated by test and

evaluated against the specification by the program

manager, thereby reducing the gaps between a feature

being checked in and it being tested or evaluated

against the specification.

Sizing the crews appropriately was another

challenge to closely monitor. We sought to avoid

making our crews too lean, which would result in their

being heavily impacted by the overhead of quality

gates and by team member absences. We also sought to

avoid crews being too large, so as to promote the

effectiveness of their stand-ups, enhance the focus on

their end to end experience, and avoid the tendency of

larger teams being called upon for emergency work

items such as sustaining engineering work for previous

products. Our choice to use long-lived crews formed

around end to end user experiences, while promoting

continuity and depth of knowledge within the crew,

also presented management with the challenge to

prioritize investment in one end to end user experience

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

over another, as moving people between crews was

disruptive.

Isolating features in branches prevented the

inevitable disruption caused by having a large number

of developers working in the same codebase. However

it also decreased one crew’s visibility into the work

being done by another crew in a different branch and

made getting interim updates costly. Tracking work

that might have effects outside a single crew was a

responsibility that was embraced by the leads. They

tracked dependencies and looked for inconsistencies in

end to end experiences beyond the scope of each

individual crew.

The final product is the sum of each feature crew’s

end to end experience. Additional integration testing

was performed to ensure that one experience integrated

well with the rest of the experiences being developed

in Visual Studio. We used our product unit branch as a

staging ground for this integration and used two

models for verifying a successful integration. One

model assigned a feature crew to own integration

testing and “application building” activities. The

second model distributed the ownership across all the

feature crews. Each model had its respective pros and

cons. In the first the majority of crews were able to

focus completely on feature work while a single crew

had to put their feature on hold, in the second all crews

were equally impacted by the this integration “tax” but

could also continue with feature work. Servicing our

existing products also presented a significant challenge

for the team. Several models for servicing our existing

products were used during the cycle. In one model a

dedicated engineering team owned all sustaining work

with input from the feature team. A second model used

an offshore team to take over some major sustaining

tasks and defray the impact on the product unit. A third

model involved assigning sustaining tasks into the

backlog of each feature crew. All of these models had

their pros and cons and were used with varying levels

of success.

We also discovered the importance of “slack” [5].

We found that feature crews that were afforded more

slack spent their time constructively: continuously

improving our tools and processes, developing and

contributing to incubation projects, and better

managing technology spiking. The test organization

was particularly successful in this regard.

The transparency afforded by iteration reviews,

backlogs, burndowns, and stand-ups proved invaluable

and allowed for better course corrections on a more

timely basis. The information collected in the

burndowns allowed the crews to learn to better

estimate and set more realistic load factors for

subsequent iterations.

Forward and reverse integration schedules and

processes were very complex and time consuming;

thus, having a full time build engineer and full time

release manager was tremendously helpful. Integration

schedules were such that feature crews had to commit

to an exact date, usually a few weeks out, for their

reverse integration into the parent branch. This reduced

the degree of flexibility as to scope, quality, and time,

leading to strain on the only remaining variable—

people—as they sought to pass the quality gates and

make an integration window. In the future we plan to

automate more of the quality gate and integration work

and move some verification to the product unit branch

level so as to enhance the working environment for,

and relationships among and within, the feature crews.

Overall, we discovered that it is possible to mix

agility and the inconceivably large. Despite the

complexity of the Visual Studio product, we were able

to greatly improve our ability to respond to customer

needs and maintain a stable and high quality product

throughout this development cycle. We were able to

dramatically reduce the gap between features being

implemented and features being verified, and were able

to build more cohesive and empowered teams.

5. Notes

Ade Miller (ade@ademiller.com) was a

Development Lead for the Visual Studio Tools for

Office product unit and now works for Microsoft’s

patterns & practices group. Eric Carter is the

Development Manager for the Visual Studio Tools for

Office product unit.

The information and recommendations in this

article represent our personal views and do not

necessarily represent the view of our employer,

Microsoft Corporation.

6. References

[1] B. Boehm, and R. Turner, Balancing Agility and

Discipline: A Guide for the Perplexed, Addison Wesley,

Boston, 2005.

 [2] Jacob, John, Mario Rodriquez, and Graham Barry.

“Microsoft Team Foundation Server Branching Guidance.”

Online Posting. 20 Mar. 2007. CodePlex. 18 May 2007

<http://www.codeplex.com/BranchingGuidance>.

[3] M. Cohn, Agile Estimating and Planning, Prentice

Hall, 2005.

[4] K. Schwaber, Agile Project Management with Scrum,

Microsoft Press, 2004.

[5] T. DeMarco, Slack: Getting Past Burnout, Busywork,

and the Myth of Total Efficiency, Broadway, 2002.

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

