

A Hundr

Abstract

Many agile teams use Continuous I
It is one of the Extreme Programmin
has been broadly adopted by the comm
how effective is it? Does the effort of
CI server and fixing build breaks save
to a lengthier check-in process that at
break the build? While much anecdota
as to the benefits of CI there is very lit
data to support this. How do you conv
management that it’s worth adopting a
do it? This report outlines our experien
distributed team environment and atte
these questions.

1. Background

The data presented here was coll
Team Foundation Server and continu
(CI) servers used on the Web Se
Factory: Modeling Edition (Service F
(http://www.msdn.com/servicefactory).
Factory was a small project run by Mic
& practices group and staffed by about
It ran for nine months during 2007, del
release in November of that year.

The Service Factory development t
in Redmond, WA where two develope
A further three developers were loca
different locations and time zones in
These offshore developers perio
Redmond to work on site with the rest
also worked with a test team located in

Over a period of about a hundred
(approximately 4000 hours of develop
monitored the number of check-ins an
CI server build failures. During this t
went from being in full flight, deliverin
3 week iterations, to executing
stabilization phase and shipping.

On average developers checked i
Offshore developers had to deal with n
and checked in less frequently; batchin
single changesets. The distributed nat

red Days of Continuous Integration

Ade Miller
Microsoft Corporation

ade.miller@microsoft.com

Integration (CI).
ng practices and
munity [1]. Just
f maintaining the
e time compared
ttempts to never
l evidence exists

ttle in the way of
vince teams and
and how best to
nce with CI in a
empts to answer

lected from the
uous integration
ervice Software
Factory) project
. Service
crosoft’s patterns
t a dozen people.
livering the final

team was based
ers were located.
ated offshore in
South America.
dically visited
of the team. We
India.

d working days
pment time) we

nd the associated
time the project
ng features in 2-
a three week

in once a day.
network latencies
ng up work into
ture of the team

made pair programming difficult if
tried to achieve shared code own
reviews for each check-in. This, c
differences, also led to some bat
reduced the check-in frequency.

Our CI server compiled the cod
and FxCop (http://blogs.msdn.co
every time a check-in took place. W
server compiling MSI installers, t
twice a day, and doing a further
generate static analysis data
(www.ndepend.com) and unit t
metrics.

2. What broke the build?

Over the analysis period the te

times which resulted in 515 bui
breaks (13% of check-ins) includin
the server down over night.

Figure 1: Causes of bui

A build break was defined

consecutive failed CI builds. Fo

1 Our CI server was configured to run each
changeset but not to queue and run builds fo
accounts for there being slightly more check

FxCop /
static

analysis
40%

Server
6%

f not impossible. We
ership through code
combined with time
tching of work and

de and ran unit tests
om/fxcop/) analysis

We also had the same
esting them once or
build each night to

using NDepend
test code coverage

eam checked in 551
ilds1 with 69 build

ng six breaks that left

ild breaks

as one or more
or example, a build

time it detected a new

or each changeset. This
k-ins than builds.

Compile
26%

Unit
Tests
28%

break is followed up by a fix check-in that fails to
correct the issue resulting in another failed build. This
counts as a single break. The length of the break is
taken to be the time difference between the first failed
build and the next successful build.

High level root cause analysis of these breaks
revealed four main causes, as shown in Figure 1.

Compile – A developer checked in code that failed

to compile, typically due to files missing from the
changeset but present on the local machine.

Unit Tests – A developer checked in code that
broke unit tests.

FxCop / static analysis – A developer checked in
code that failed the static analysis bar.

Server – Our server was a virtual machine running
on Windows Server 2003. We didn’t anticipate how
large our CI builds would become, eventually requiring
more disk and memory than the server had available.
This caused the CI server to fail, in several cases
overnight.

It’s also worth noting that some members of the
development team were not particularly familiar with
our CI practices at the start of the project and our
distributed nature made coaching them that much more
challenging. We might well improve our 13% failure
rate on check-ins on a subsequent project. As Troy
Maginnis points out broken CI builds aren’t
necessarily a sign of an unhealthy team but apathy
around getting the build back to green definitely is [2].

3. Which were the worst breaks?

How long did most breaks cause the server to be
down and which types of breaks took the most time to
fix? Figure 2 shows the distribution of breaks by
duration. This is important because once the build is
broken other developers cannot check in their work,
effectively blocking the team’s progress.

As is clear from Figure 2 the great majority of build
breaks were fixed within an hour. We had seven breaks
that left the server broken out of Redmond business
hours (overnight). Several of the other lengthy breaks
were related to server issues (see Figure 3).

Figure 2: Length of build breaks

Our process around CI server breaks was as

follows. After an initial investigation, one developer
would fix the build while the rest of the team continued
with their work but did not attempt further check-ins.
Excluding out of Redmond business hours breaks, the
average time to fix a CI issue was 42 minutes. This
includes the time to submit the fix and have it verified
by the CI server—approximately 20 minutes. So a
typical CI issue fix took less than an hour. This is short
enough that breaks typically did not block other
developers significantly.

Figure 3: Average time to fix a build break

4. How much did CI cost?

From the data we collected it is possible to infer the
cost of using a CI driven check-in system over the
course of the 108 working days and 551 check-ins.
Let’s assume that developers compile the code, run

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18

N
um

be
r o

f b
re

ak
s

Length of break in hours

0:00
1:00
2:00
3:00
4:00
5:00
6:00
7:00
8:00
9:00

Compile FxCop Server Unit Tests

A
ve

ra
ge

 ti
m

e
to

 fi
x

in
 h

ou
rs

Cause of break

All

Out of hours
excluded

appropriate unit tests against their change, and possibly
run some static analysis prior to submitting their
change. Developers also have to get a code review for
all but trivial changes. It is assumed that they waited
for feedback on the review in parallel with other work
or were pair programming. The overhead for reviews is
not considered as it would occur with or without
adopting a CI process.

Given these assumptions a reasonable estimate,
based on our experiences, for the time spent by a
developer doing these tasks is twenty minutes; ten
minutes doing a full compilation and running tests, and
ten minutes reviewing changes, writing check-in notes
and e-mails, etc.

Using the data from the CI server (presented in
Sections 2 and 3) we also know that the average build
break took a developer about 45 minutes to fix and that
there were 69 build breaks.

Table 1: CI process overhead
CI Server setup and maintenance time and
build script authoring (est.)

50

Total time spent checking in
20 minutes (est.) × 551

165.3

Total time spent fixing build breaks
45 minutes × 69

51.75

Total overhead (hours) 267

Table 1 shows the total cost to the project

associated with checking in and fixing build breaks
was approximately 267 hours, 7% of the total effort.

5. What might an alternative have cost?

Let’s consider a hypothetical heavyweight check-in
process for this team.

For each check-in a developer is required to
compile, run all unit tests, the installation tests, and
static analysis tools on a clean build machine.

In other words developers do all the work the CI

server is doing before each check-in. This is really the
only alternative directly equivalent to CI in terms of
ensuring the same quality of the code base and product
under development. Other alternatives are discussed in
Section 6.

Such an approach for this team would take at least
50 minutes; ten minutes doing a full compilation and
running some tests on the developer’s system, ten
minutes to create a changeset and unpack it on the
clean build machine, 20 minutes to compile the code
and run all tests and some static analysis (based on the
time taken by the CI server), plus an additional ten

minutes for reviewing changes, writing check-in notes
and e-mails, etc. Let’s assume the best case and say
that no build breaks ever happened and the clean build
machine never needed to be rebuilt because the check-
in process was so perfect. As shown in Table 2 the
lowest possible total cost would then be 464 hours,
12% of the total development effort.

This is the best possible case for our alternative
process. Build breaks will occur and need to be fixed.
This estimate also allocates only a minimal time to set
up and maintain a clean machine for builds.

Table 2: Alternative process overhead

Clean build machine setup and
maintenance time (est.)

5

Total time spent checking in
50 minutes (est.) × 551

459

Total time spent fixing build breaks 0
Total projected overhead (hours) 464

Even this optimistic analysis of the alternative

suggests that it would result in at least another 200
(5%) hours being spent on integrating changes rather
than generating customer value.

6. Other check-in alternatives

Are there are other approaches one might take to
reduce check-in overhead? Developers could optimize
the process by amortizing the check-in overhead across
several tasks or bugs. In this scenario the developers
check in work related to several tasks or bugs in a
single changeset, typically checking in once every few
days but maybe keeping work on their machine for
more than a week. Further overhead reduction can also
be achieved by amortizing check in work across
developers by having an “Open Check-in Window.”
During this window developers can check in without
any validation and one developer runs the validation,
identifies breaking changes, and coordinates any fixes.

Indeed, by batching up work and doing fewer

check-ins developers could reduce the overhead to be
on a par with the CI process. Unfortunately, these
alternatives have several negative consequences:

• When (not if) the build breaks, fixing it will be

harder because the changeset that needs to be
examined is much larger and may have multiple
authors.

• Checking in less frequently increases the possibility
of merge conflicts and therefore causes additional
work.

• Checking in less frequently reduces visibility into
the current state of the code. Unchecked code is
essentially hidden—it is invisible to stakeholders
looking at the latest build.

• Code reviews on large changesets take more time
and are harder to do effectively.

• Usually during any product stabilization phase
developers are typically only allowed to check-in
changesets for a single bug or design change, the
batching strategy isn’t available to them. This can
significantly slow up your release process.

So while there are other alternative approaches that

reduce the check-in overhead most of them do so at the
expense of maintaining the quality of the code base and
product under development. Reduced quality has
further knock-on costs, not only to the product but also
to the team’s time. Developers spend more time
debugging and maintaining their code thereby
decreasing the team’s velocity.

7. Conclusions

The actual cost of using the CI approach on this
project was at least 40% less that the hypothetical cost
of a check-in process that doesn’t leverage CI but still
maintains the same level of code base quality. Given
the relatively small size of the product being developed
and the low cost of doing a complete build this study
actually gives us a number for the smallest saving
likely from deploying a CI process. Experience with
larger teams on larger product, specifically Visual
Studio Tools for Office [3] suggests that the case
presented here actually downplays the advantages of
CI. CI shortened the check-in process for Visual Studio
Tools for Office developers from over two hours to
less than one. This represents a potentially much larger
saving than seen here.

Given all of the above, teams moving to a CI driven
process can expect to achieve at least a 40% reduction
in check-in overhead when compared to a check-in
process that maintains the same level of code base and
product quality.

8. Best practices and lessons learned

In the course of running the Service Factory project we
learned something about maximizing our investment in
CI and using it with highly distributed teams.

We developed a Defense in Depth approach to CI,
adding more and more testing and analysis to the CI
server as we came across issues. Initially our CI server
compiled the code and ran unit tests. Over time we

added FxCop and NDepend for static analysis, source
tree layout checking, code coverage tracking, MSI
testing and partial installer tests. Each time we
increased the depth of our defenses against a drop in
product quality. In some cases we added defenses to
address some specific problem we had been having.

Defense in depth requires high end hardware for the
build server so that the team can keep adding new tests
and analysis without slowing it down. We ended up
running several different CI builds largely because
running everything in one build became prohibitively
slow and we wanted the check-in build to run quickly.

Think of the CI server as a way of taking the grunt

work out of checking in code. Machines are good at
executing repeated tests, people aren’t. To that end we
adopted the following rules:

• Treat warnings as errors. Modify your build scripts

to fail on warnings.
• If you break the build, you fix the build. Don’t

make the people who are co-located with the CI
server responsible for fixing it.

• Don’t check in and go home. This leaves the
remaining developers to clean up the mess or
potentially be blocked for the remainder of their
day.

Agile development’s everyone in the team room
philosophy is seriously challenged by geographically
and temporally distributed teams [4]. Our team’s heavy
reliance on CI further highlighted the impact of these
challenges. The following recommendations are a
result of our experiences:

• Co-locate as much as possible: If this is not

possible then plan for team members to spend time
traveling and working at the main or offshore site,
especially at the start of a project—the first few
iterations—when key architectural/design decisions
will be made.

• Align the team locations: The more offshore
locations your team has the higher the
communication barriers become. When using
offshore team members group them into sub-teams
aligned by feature.

• Time zones add further tax: One of the hardest
aspects of distributed collaboration is working
across time zones. Try to minimize the time shift
between the team locations as much as possible and
try to establish core working hours that all members
can adhere to.

• Co-locate by feature not discipline: Distributed
sub-teams should work together on features rather

than be distributed by discipline; for example, have
an offshore team working on a feature not an
offshore PM or Test team. Splitting your team by
discipline increases the boundaries between
activities, it’s the old developers build it and throw
it at the testers, only worse.

• Onshore representative for offshore team: Have
someone in the team room responsible for being the
offshore team’s voice in the room. This isn’t to get
the offshore people off the hook for attending
standup or using other practices to maximize
communication. It’s designed to help the remote
team members stay synched up with key
conversations they may have missed.

• Pay the tax associated with distribution: Co-
location of your team allows them to communicate
rapidly with minimal formal processes. If you have
distributed team members be prepared to pay the
tax associated with this. For example, your
specifications will need to be much more complete
to offset communication that would have occurred
in a team room—you’ll be writing much more
complete story cards for example. More pre-work
will also be required for meetings, for example
getting user stories in shape prior to iteration
planning so that the team can review and ask
clarifying questions via e-mail rather than during
the meeting.

• Improve communication where possible: Get
good communication going from the outset of the
project. Make sure everyone has access to the right
communications tools; conference phones, instant
messenger or IRC, hands free phone headsets, a
camera for taking whiteboard pictures and
sufficient network bandwidth to use them
effectively.

• Focus on team consistency: It takes time to build
good working relationships, especially on
distributed teams. Try and minimize staff churn on
teams so that this is not lost.

• Add additional nightly builds for time zones: We
ended up having two builds one at 1 pm and
another at 6 pm PST. The 1 pm build gave us time
to fix any installer issues before the 6 pm build—

which had to be ready for the start of the India-
based test team’s day.

Currently patterns & practices projects are working
towards real time trend analysis of code coverage and
static analysis data.

9. Notes

Ade Miller (ade.miller@microsoft.com) is currently
the Development Lead for Microsoft’s patterns &
practices group. He writes about his experiences in
agile software development and other related topics on
his blog, #2782 (http://www.ademiller.com/tech/). The
information and recommendations in this article
represent his personal views and do not necessarily
represent the view of his employer, Microsoft
Corporation.

I’d like to thank Adam Barr, who asked the
questions that prompted me to do the analysis. I’d also
like to thank numerous people who gave their feedback
on the original drafts of this paper, most notably Alan
Ridlehoover. I’d also like to thank RoAnn Corbisier
for editing this and previous papers.

10. References

[1] Duvall, Paul, Steve Matyas, and Andrew

Glover. Continuous Integration: Improving Software
Quality and Reducing Risk, Addison Wesley, Boston,
2007.

[2] Magennis, Troy. “Continuous Integration and
Automated Builds at Enterprise Scale” Online posting.
Nov. 2007. <http://aspiring-
technology.com/blogs/troym/archive/2007/11/26/Does
ContinuousIntegrationScale.aspx>.

[3] Miller, Ade and Eric Carter. “Agility and the
Inconceivably Large.” Agile 2007, 13-17 Aug,
Washington DC, 2007.

[4] Kniberg, Henrik. Scrum and XP from the
Trenches: How we do Scrum, C4Media Inc., 2007.

